ÌâÄ¿ÄÚÈÝ
12£®£¨¢ñ£©µ±AµãµÄºá×ø±êÊÇ-1ʱ£¬Ö¤Ã÷AM=AE£»
£¨¢ò£©µ±Ö±ÏßAB±ä»¯Ê±£¨µãAÓëµãO²»Öغϣ©£¬ÇóOC•OD+AC•BDµÄÖµ£»
£¨¢ó£©µ±Ö±ÏßAB±ä»¯Ê±£¨µãAÓëµãO²»Öغϣ©£¬ÊÔÅжÏÖ±ÏßlÓëÒÔABΪֱ¾¶µÄÔ²µÄλÖùØÏµ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
·ÖÎö £¨1£©¸ù¾ÝAµãµÄºá×ø±êÊÇ-1Çó³öAµã×ø±ê£¬ÔÙÓÉM£¨0£¬1£©µÃ³öAEµÄ³¤£¬¸ù¾Ý¹´¹É¶¨ÀíÇó³öAMµÄ³¤£¬½ø¶ø¿ÉµÃ³ö½áÂÛ£»
£¨2£©ÁîA£¨xA£¬yA£©£¬B£¨xB£¬yB£©£¬ÁîÖ±ÏßABµÄº¯Êý±í´ïʽΪy=kx+1£¬ÔÙÓɸùÓëϵÊýµÄ¹ØÏµ¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©ÁîABµÄÖеãΪP£¬¹ýP¡¢B×÷Ö±ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪQ¡¢F£¬ÔòPQΪÌÝÐÎAEFBµÄÖÐλÏߣ¬ÓÉ£¨¢ò£©ÖªxA•xB=-4£¬xA+xB=4k£¬ÇÒyA=kxA+1£¬yB=kxB+1£¬ÓÉÌÝÐεÄÖÐλÏß¶¨ÀíµÃ³öPQµÄ³¤£¬ÔÙÓɹ´¹É¶¨Àí¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð
£¨¢ñ£©Ö¤Ã÷£º¡ßAµãµÄºá×ø±êÊÇ-1£¬
¡àA£¨-1£¬$\frac{1}{4}$£©£®
ÓÖ¡ßM£¨0£¬1£©£¬
¡àAE=$\frac{1}{4}$+1=$\frac{5}{4}$£®
ÔÚRt¡÷ACMÖУ¬
¡ßAM=$\sqrt{{AC}^{2}+{MC}^{2}}$=$\sqrt{{1}^{2}+£¨1-\frac{1}{4}£©^{2}}$=$\sqrt{1+\frac{9}{16}}$=$\frac{5}{4}$£¬
¡àAM=AE=$\frac{5}{4}$£»
£¨¢ò£©½â£ºÁîA£¨xA£¬yA£©£¬B£¨xB£¬yB£©£¬ÁîÖ±ÏßABµÄº¯Êý±í´ïʽΪy=kx+1£¬
ÓÉ$\left\{\begin{array}{l}y=\frac{1}{4}{x}^{2}\\ y=kx+1\end{array}\right.$¿ÉµÃx2-4kx-4=0£®
´Ë·½³ÌÖ®Á½¸ùΪA¡¢BÁ½µãµÄºá×ø±êxA£¬xB£¬
ÇÒxA•xB=-4£¬xA+xB=4k£®
¹ÊOC•OD+AC•BD=yAyB-xAxB=$\frac{1}{16}$£¨xAxB£©2-xAxB=1+4=5£®
£¨¢ó£©½â£ºÈçͼ£¬ÁîABµÄÖеãΪP£¬¹ýP¡¢B×÷Ö±ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪQ¡¢F£¬ÔòPQΪÌÝÐÎAEFBµÄÖÐλÏߣ¬ÓÉ£¨¢ò£©ÖªxA•xB=-4£¬
xA+xB=4k£¬ÇÒyA=kxA+1£¬yB=kxB+1£®
¡ßPQÊÇÌÝÐÎAEFBµÄÖÐλÏߣ¬
¡àPQ=$\frac{AE+BF}{2}$=$\frac{{£¨y}_{A}+1£©+£¨{y}_{B}+1£©}{2}$=$\frac{{y}_{A}+{y}_{B}}{2}$+1=$\frac{k£¨{x}_{A}+{x}_{B}£©}{2}$+2=2£¨k2+1£©£®![]()
ÔÚRt¡÷ACMÖпɵãº
AM=$\sqrt{{AC}^{2}+{MC}^{2}}$=$\sqrt{{x}_{A}^{2}+£¨1-{y}_{A}£©^{2}}$=$\sqrt{{x}_{A}^{2}+{k}^{2}{x}_{A}^{2}}$=-xA•$\sqrt{1+{k}^{2}}$£®
ͬÀí£¬ÔÚRt¡÷BDMÖУ¬
¡ßBM=xB•$\sqrt{1+{k}^{2}}$£®
¡àAB=AM+BM=$\sqrt{1+{k}^{2}}$•£¨xB-xA£©£¬
¡àAB2=£¨1+k2£©[£¨xA+xB£©2-4xAxB]=£¨1+k2£©£¨16k2+16£©£¬
¡àAB=4£¨1+k2£©£¬PQ=$\frac{1}{2}$AB£®
¡ßPQ¡Íl£¬
¡àÒÔABΪֱ¾¶µÄÔ²ÓëÖ±ÏßlÏàÇУ®
µãÆÀ ±¾Ì⿼²éµÄÊÇÔ²µÄ×ÛºÏÌâ£¬Éæ¼°µ½¸ùÓëϵÊýµÄ¹ØÏµ¡¢¹´¹É¶¨Àí¡¢ÌÝÐεÄÖÐλÏß¶¨ÀíµÈ֪ʶ£¬ÔÚ½â´ð£¨III£©Ê±Òª×¢ÒâÀûÓÃÊýÐνáºÏÇó½â£®