题目内容
| A、14 | B、21 | C、29 | D、31 |
考点:三角形中位线定理,平行四边形的性质
专题:
分析:由题意可知EF是△DAC的中位线,根据三角形的中位线定理即可求出AC的长.
解答:解:∵E、F分别是AD、DC的中点,
∴EF是△DAC的中位线,
∴EF
AC,
∴AC=2EF=14,
故选A.
∴EF是△DAC的中位线,
∴EF
| 1 |
| 2 |
∴AC=2EF=14,
故选A.
点评:本题考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
练习册系列答案
相关题目
若a(xmy3)3÷(2x3yn)2=4x6y3,则m、n、a的值分别为( )
| A、m=4、n=3、a=14 |
| B、m=5、n=4、a=17 |
| C、m=4、n=3、a=16 |
| D、m=4、n=4、a=16 |
若一个多边形有5条对角线,则这个多边形的边数为( )
| A、4 | B、5 | C、6 | D、7 |
下列式子正确的是( )
A、
| |||
B、
| |||
C、
| |||
D、±
|