题目内容

1.已知:x=$\frac{1}{\sqrt{2}-1}$,y=$\frac{1}{\sqrt{2}+1}$,求下列各式的值:
(1)x2+2xy+y2
(2)x2-y2
(3)x2+y2

分析 (1)先化简x、y的值,然后代入x2+2xy+y2,从而可以解答本题;
(2)先化简x、y的值,然后代入x2-y2,从而可以解答本题;
(3)先化简x、y的值,然后代入x2+y2,从而可以解答本题.

解答 解:(1)∵x=$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}+1$,y=$\frac{1}{\sqrt{2}+1}$=$\sqrt{2}-1$,
x2+2xy+y2
=(x+y)2
=($\sqrt{2}+1+\sqrt{2}-1$)2
=8;
(2)∵x=$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}+1$,y=$\frac{1}{\sqrt{2}+1}$=$\sqrt{2}-1$,
∴x2-y2
=(x+y)(x-y)
=($\sqrt{2}+1+\sqrt{2}-1$)($\sqrt{2}+1-\sqrt{2}+1$)
=$2\sqrt{2}$×2
=4$\sqrt{2}$;
(3)∵x=$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}+1$,y=$\frac{1}{\sqrt{2}+1}$=$\sqrt{2}-1$,
∴x2+y2
=$(\sqrt{2}+1)^{2}+(\sqrt{2}-1)^{2}$
=$3+2\sqrt{2}+3-2\sqrt{2}$
=6.

点评 本题考查二次根式的化简求值,解题的关键是明确二次根式化简求值的方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网