题目内容
8.(1)三等角四边形ABCD中,∠DAB=∠ABC=∠BCD,求∠A的取值范围;
(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.
分析 (1)根据四边形的内角和是360°,确定出∠A的范围;
(2)由四边形DEBF为平行四边形,得到∠E=∠F,且∠E+∠EBF=180°,再根据等角的补角相等,判断出∠DAB=∠DCB=∠ABC,即可.
解答 解:(1)∵∠A=∠B=∠C,
∴3∠A+∠ADC=360°,
∴∠ADC=360°-3∠A.
∵0<∠ADC<180°,
∴0°<360°-3∠A<180°,
∴60°<∠A<120°;
(2)证明:∵四边形DEBF为平行四边形,
∴∠E=∠F,且∠E+∠EBF=180°.
∵DE=DA,DF=DC,
∴∠E=∠DAE=∠F=∠DCF,
∵∠DAE+∠DAB=180°,∠DCF+∠DCB=180°,∠E+∠EBF=180°,
∴∠DAB=∠DCB=∠ABC,
∴四边形ABCD是三等角四边形.
点评 本题主要考查了翻折变换-折叠问题,四边形的内角和是360°,平行四边形的性质,正方形的性质,勾股定理,解本题的关键是熟练掌握折叠的性质.
练习册系列答案
相关题目
13.已知关于x,y的二元一次方程组$\left\{\begin{array}{l}{3x+2y=a+2}\\{2x+3y=a}\end{array}\right.$的解满足x与y之和为2,求a的值.
20.我市2013年平均房价为每平方米13000元,连续两年增长后,2015年平均房价达到每平方米15500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是( )
| A. | 15500(1+x)2=13000 | B. | 15500(1-x)2=13000 | C. | 13000(1+x)2=15500 | D. | 13000(1-x)2=15500 |
17.
如图,在△ABC中,∠C=90°,AC=BC,AB=2,点O为AB的中点,以点O为圆心作半圆与边AC相切于点D.则图中阴影部分的面积为( )
| A. | 1-$\frac{1}{4}$π | B. | $\frac{1}{2}$-$\frac{π}{8}$ | C. | 2-$\frac{3π}{4}$ | D. | 2-$\frac{1}{4}$π |
18.
如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:
(1)根据表中数据的规律,完成以下表格,并直接写出y关于x的函数解析式;
(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;
(3)设挎带的长度为lcm,求l的取值范围.
| 单层部分的长度x(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
| 双层部分的长度y(cm) | … | 73 | 72 | 71 | … |
(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;
(3)设挎带的长度为lcm,求l的取值范围.