题目内容
11.某同学在A、B两家超市发现他看中的MP4的单价相同,书包的单价也相同,MP4和书包的单价和为452元,且MP4的单价为书包单价的4倍少8元,某天两超市促销,A超市所有商品打8折出售,B超市购物每满100元省30元.如果他在A、B两家超市购买这两样物品各一件,怎样购买更省钱?
你还能设计出一种更省钱的方案吗?试一试!
分析 设书包的单价为x元,则MP4的单价为(4x-8)元.根据两件商品单价之和是452元,得出方程,解方程求出x的值,得到MP4和书包的单价.分别求出他在A、B两家超市购买这两样物品各一件的价钱,比较得出购买更省钱的方案;两样物品都在B家超市购买时更省钱.
解答 解:设书包的单价为x元,则MP4的单价为(4x-8)元.
根据题意,得4x-8+x=452,
解这个方程得x=92.
4x-8=4×92-8=360(元).
他在A超市购买书包需要:92×0.8=73.6(元),购买MP4需要:360×0.8=288(元),
他在B超市购买书包需要:92元,购买MP4需要:360-30×3=270(元),
所以,如果他在A、B两家超市购买这两样物品各一件,当在A超市购买书包,B超市购买MP4时更省钱;此时需要73.6+270=343.6(元).
在同一家超市购买这两样物品时,在A超市购买需要:452×0.8=361.6(元),在B超市购买需要:452-30×4=332(元),
361.6>343.6>332,
所以两样物品都在B家超市购买时更省钱.
点评 本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
练习册系列答案
相关题目
1.
右图的几何体,从左面看得到的平面图形是( )
| A. | B. | C. | D. |
3.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,表是试验中的一组统计数据:
(1)请估计:当n很大时,摸到白球的频率将会接近0.6;(精确到0.1)
(2)假如你摸一次,你摸到白球的概率约为0.6.
| 摸球的 次数n | 100 | 200 | 300 | 500 | 800 | 1 000 | 2 000 |
| 摸到白球 的次数m | 65 | 124 | 178 | 302 | 481 | 599 | 1 202 |
| 摸到白球的频率$\frac{m}{n}$ | 0.650 | 0.620 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(2)假如你摸一次,你摸到白球的概率约为0.6.