题目内容
6.菱形的周长为40,它的一条对角线长为12,则菱形的面积为( )| A. | 24 | B. | 48 | C. | 96 | D. | 192 |
分析 根据菱形的性质,四条边相等且对角线互相平分且互相垂直,由勾股定理得出BO的长,进而得其对角线BD的长,再根据菱形的面积等于对角线乘积的一半计算即可.
解答
解:如图:四边形ABCD是菱形,对角线AC与BD相交于点O,
∵菱形的周长为40,
∴AB=BC=CD=AD=10,
∵一条对角线的长为12,当AC=12,
∴AO=CO=6,
在Rt△AOB中,BO=$\sqrt{A{B}^{2}-A{O}^{2}}$=8,
∴BD=2BO=16,
∴菱形的面积=$\frac{1}{2}$AC•BD=96,
故选C.
点评 此题主要考查了菱形的性质、菱形的面积公式以及勾股定理等知识,根据题意得出BO的长是解题关键.
练习册系列答案
相关题目
16.
亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某校八年级学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.
请根据图表信息解答下列问题:
(1)a=35;
(2)补全条形统计图;
(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?
(4)若把每天进行体育锻炼的时间在1小时以上定为锻炼达标,则被抽查学生的达标率是多少?
| 类别 | 时间t(小时) | 人数 |
| A | t≤0.5 | 5 |
| B | 0.5<t≤1 | 20 |
| C | 1<t≤1.5 | a |
| D | 1.5<t≤2 | 30 |
| E | t>2 | 10 |
(1)a=35;
(2)补全条形统计图;
(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?
(4)若把每天进行体育锻炼的时间在1小时以上定为锻炼达标,则被抽查学生的达标率是多少?