题目内容

已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.
其中结论正确的个数是(  )
A、1B、2C、3D、4
考点:全等三角形的判定与性质
专题:
分析:①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形AEC全等,由全等三角形的对应边相等得到BD=CE,本选项正确;
②由三角形ABD与三角形AEC全等,得到一对角相等,由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°,本选项正确;
③再利用等腰直角三角形的性质及等量代换得到BD垂直于CE,本选项正确;
④利用周角减去两个直角可得答案.
解答:解:①∵∠BAC=∠DAE=90°,
∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,
∵在△BAD和△CAE中,
AB=AC
∠BAD=∠CAE
AD=AE

∴△BAD≌△CAE(SAS),
∴BD=CE,本选项正确;
②∵△ABC为等腰直角三角形,
∴∠ABC=∠ACB=45°,
∴∠ABD+∠DBC=45°,
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∴∠ACE+∠DBC=45°,本选项正确;
③∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,
∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,
则BD⊥CE,本选项正确;
④∵∠BAC=∠DAE=90°,
∴∠BAE+∠DAC=360°-90°-90°=180°,故此选项正确,
故选:D.
点评:此题考查了全等三角形的判定与性质,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网