题目内容

二次函数y=ax2+bx+c的图象过A(﹣3,0),B(1,0),C(0,3),点D在函数图象上,点C,D是二次函数图象上的一对对称点,一次函数图象过点B,D,求:

(1)一次函数和二次函数的解析式;

(2)写出使一次函数值大于二次函数值的x的取值范围.

(1)y1=﹣x2﹣2x+3(2)x<﹣2或x>1. 【解析】 试题分析:(1)将A、B、C的坐标代入抛物线的解析式中即可求得二次函数的解析式,进而可根据抛物线的对称轴求出D点的坐标,再用待定系数法求出一次函数解析式; (2)根据(1)画出函数图象,即可写出一次函数值大于二次函数值的x的取值范围. 【解析】 (1)二次函数y1=ax2+bx+c的图象经过点A(﹣3,0),...
练习册系列答案
相关题目

已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).

(1)求出b,c的值,并写出此二次函数的解析式;

(2)根据图象,写出函数值y为正数时,自变量x的取值范围.

(1)b="2,c=3," y=﹣x2+2x+3.(2) ﹣1<x<3 【解析】试题分析:(1)把抛物线上的两点代入解析式,解方程组可求b、c的值; (2)令y=0,求抛物线与x轴的两交点坐标,观察图象,求y>0时,x的取值范围. 试题解析:(1)将点(﹣1,0),(0,3)代入y=﹣x2+bx+c中,得 ,解得. ∴y=﹣x2+2x+3. (2)令y=0,解方...

过△ABC的顶点C作边AB的垂线将∠ACB分为20°和40°的两个角,那么∠A,∠B中较大的角的度数是____________.

70° 【解析】根据题意画出图形,则∠ACD=40°,∠DCB=20°. ∵CD⊥AB,∠ACD=40°,∠DCB=20°, ∴∠A=50°,∠B=70°, ∴∠A、∠B中较大的角的度数是70°. 故答案为:70°.

分解因式:4m3n-16mn3.

4mn(m+2n)(m-2n) 【解析】试题分析:提取公因式4mn后,再利用平方差公式因式分解即可. 试题解析: 4m3n-16mn3 =4mn(m2-4n2) =4mn(m+2n)(m-2n).

分解因式:16-x2=( )

A. (4-x)(4+x) B. (x-4)(x+4)

C. (8+x)(8-x) D. (4-x)2

A 【解析】试题分析:直接利用平方差公式分解因式得出答案.16﹣x2=(4﹣x)(4+x).

如图所示,在同一平面直角坐标系中,作出①y=﹣3x2,②y=﹣,③y=﹣x2的图象,则从里到外的三条抛物线对应的函数依次是______(填序号)

① ③ ② 【解析】①y=?3x²,②y=?x²,③y=?x²中,二次项系数a分别为?3、?、?1, ∵|?3|>|?1|>,∴抛物线②y=?x²的开口最宽,抛物线①y=?3x²的开口最窄。 故答案为:①③②。

如图,小姚身高m在某次投篮中,球的运动路线是抛物线的一部分,若命中篮圈中心,则他与篮底的距离是( )

A. 3.5m B. 4m C. 4.5m D. 4.6m

B 【解析】试题分析:分别求出当y=3.05和当y=时的x的值,前面那个取正数,后面的那个取负数,然后计算它们之间的距离.

已知点P(-1,m)在二次函数的图象上,则m的值为____________;

0 【解析】∵点P(-1,m)在二次函数y=x2-1的图象上, ∴m=1-1=0. 故答案是:0.

如图所示,梯形ABCD中AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点A′处,若∠A′BC=20°,则∠A′BD的度数为( )

A. 15° B. 20° C. 25° D. 30°

C 【解析】∵∠A′BC=20° ∴∠BA′C=70° ∴∠DA′B=110° ∴∠DAB=110° ∴∠ABC=70° ∴∠ABA′=∠ABC﹣∠A′BC=70°﹣20°=50° ∴∠A′BD=∠ABA′=25°. 故选C.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网