ÌâÄ¿ÄÚÈÝ
8£®ÏÈ×ÐϸÔĶÁ²ÄÁÏ£¬ÔÙ³¢ÊÔ½â¾öÎÊÌ⣺Íêȫƽ·½¹«Ê½x2¡À2xy+y2=£¨x¡Ày£©2¼°£¨x¡Ày£©2µÄÖµºãΪ·Ç¸ºÊýµÄÌØµãÔÚÊýѧѧϰÖÐÓÐ׏㷺µÄÓ¦Ó㬱ÈÈç̽Çó¶àÏîʽ2x2+12x-4µÄ×î´ó£¨Ð¡£©ÖµÊ±£¬ÎÒÃÇ¿ÉÒÔÕâÑù´¦Àí£º
½â£ºÔʽ=2£¨x2+6x-2£©
=2£¨x2+6x+9-9-2£©
=2[£¨x+3£©2-11]
=2£¨x+3£©2-22
ÒòΪÎÞÂÛxȡʲôÊý£¬¶¼ÓУ¨x+3£©2µÄֵΪ·Ç¸ºÊý
ËùÒÔ£¨x+3£©2µÄ×îСֵΪ0£¬´Ëʱx=-3
½ø¶ø2£¨x+3£©2-22
µÄ×îСֵÊÇ2¡Á0-22=-22
ËùÒÔµ±x=-3ʱ£¬Ô¶àÏîʽµÄ×îСֵÊÇ-22
½â¾öÎÊÌ⣺
Çë¸ù¾ÝÉÏÃæµÄ½âÌâ˼·£¬Ì½Çó¶àÏîʽ3x2-6x+12µÄ×îСֵÊǶàÉÙ£¬²¢Ð´³ö¶ÔÓ¦µÄxµÄȡֵ£®
·ÖÎö ÔʽÌáÈ¡3£¬Åä·½ºóÀûÓ÷ǸºÊýµÄÐÔÖÊÇó³ö×îСֵ£¬ÒÔ¼°´ËʱxµÄÖµ¼´¿É£®
½â´ð ½â£ºÔʽ=3£¨x2-2x+4£©
=3£¨x2-2x+1-1+4£©
=3£¨x-1£©2+9£¬
¡ßÎÞÂÛxȡʲôÊý£¬¶¼ÓУ¨x-1£©2µÄֵΪ·Ç¸ºÊý£¬
¡à£¨x-1£©2µÄ×îСֵΪ0£¬´Ëʱx=1£¬
¡à3£¨x-1£©2+9µÄ×îСֵΪ£º3¡Á0+9=9£¬
Ôòµ±x=1ʱ£¬Ô¶àÏîʽµÄ×îСֵÊÇ9£®
µãÆÀ ´ËÌ⿼²éÁËÍêȫƽ·½¹«Ê½£¬·Ç¸ºÊýµÄÐÔÖÊ£¬ÒÔ¼°Åä·½·¨µÄÓ¦Óã¬ÊìÁ·ÕÆÎÕÍêȫƽ·½¹«Ê½ÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
16£®ÏÂÁÐÔËËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | x2+x3=x5 | B£® | a3•a4=a12 | C£® | £¨2x£©4=8x4 | D£® | £¨-x3y£©2=x6y2 |
20£®
Èçͼ£¬ÔÚRt¡÷OABÖУ¬OA=2£¬AB=1£¬OAÔÚÊýÖáÉÏ£¬µãOÓëÔµãÖØºÏ£¬ÒÔÔµãΪԲÐÄ£¬Ïß¶ÎOB³¤Îª°ë¾¶»»¡£¬½»ÊýÖáÕý°ëÖáÓÚÒ»µã£¬ÔòÕâ¸öµã±íʾµÄʵÊýÊÇ£¨¡¡¡¡£©
| A£® | $\sqrt{2}$ | B£® | $\sqrt{5}$ | C£® | 3 | D£® | 2$\sqrt{5}$ |