题目内容

14.如图,AC是⊙O的直径,OE⊥AC交弦AB于E,若BC=4,S△AOE=5,则sin∠BOE的值为$\frac{3}{5}$.

分析 由题意可知,OE为直径AC的中垂线,则CE=AE=5,S△AEC=2S△AOE=10,由S△AEC求出线段AE的长度,进而在Rt△BCE中,由勾股定理求出线段BE的长度;然后证明∠BOE=∠BCE,从而可求得结果.

解答 如图,连接EC.

由题意可得,OE为直径AC的垂直平分线,∠ABC=90°,
∴CE=AE,S△AOE=S△COE=5,
∴S△AEC=2S△AOE=10.
∴$\frac{1}{2}$AE•BC=10,
∵BC=4,
∴AE=5,
∴EC=5.
在Rt△BCE中,由勾股定理得:BE=$\sqrt{C{E}^{2}-B{C}^{2}}$=3.
∵∠EBC+∠EOC=90°+90°=180°,
∴B、C、O、E四点共圆,
∴∠BOE=∠BCE.
∴sin∠BOE=sin∠BCE=$\frac{3}{5}$.
故答案为:$\frac{3}{5}$.

点评 此题考查了线段垂直平分线的性质;勾股定理;圆周角定理;锐角三角函数的定义.解题的关键是:添加辅助线将∠BOE转化为∠BCE.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网