题目内容
6.分析 先根据半径OA长是6米,C是OA的中点可知OC=$\frac{1}{2}$OA=3米,再在Rt△OCD中,利用勾股定理求出CD的长,根据锐角三角函数的定义求出∠DOC的度数,由S阴影=S扇形AOD-S△DOC即可得出结论.
解答
解:如图,连接OD.
∵弧AB的半径OA长是6米,C是OA的中点,
∴OC=$\frac{1}{2}$OA=$\frac{1}{2}$×6=3米,
∵∠AOB=90°,CD∥OB,
∴CD⊥OA,
在Rt△OCD中,∵OD=6,OC=3,
∴CD=$\sqrt{{OD}^{2}-{OC}^{2}}$=$\sqrt{{6}^{2}-{3}^{2}}$=3$\sqrt{3}$米,
∵sin∠DOC=$\frac{CD}{OD}$=$\frac{3\sqrt{3}}{6}$=$\frac{\sqrt{3}}{2}$,
∴∠DOC=60°,
∴S阴影=S扇形AOD-S△DOC=$\frac{60π×{6}^{2}}{360}$-$\frac{1}{2}$×3×3$\sqrt{3}$=6π-$\frac{9\sqrt{3}}{2}$(平方米).
答:图中休闲区的面积是6π-$\frac{9\sqrt{3}}{2}$平方米.
点评 本题考查的是扇形的面积,根据题意求出∠DOC的度数,再由S阴影=S扇形AOD-S△DOC得出结论是解答此题的关键.
练习册系列答案
相关题目
14.计算3x2-2x2的结果为( )
| A. | -5x2 | B. | 5x2 | C. | -x2 | D. | x2 |
15.声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)的关系如下表:
①观察上表,气温每升高5℃,音速如何变化?
②求出y与x之间的表达式;
③气温x=22℃时,某人看到烟花燃放5秒后才听到响声,那么此人与烟花燃放处的距离多远?
| 气温x(℃) | 0 | 5 | 10 | 15 | 20 |
| 音速y(米/秒) | 331 | 334 | 337 | 340 | 343 |
②求出y与x之间的表达式;
③气温x=22℃时,某人看到烟花燃放5秒后才听到响声,那么此人与烟花燃放处的距离多远?
16.
如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法不正确的是( )
| A. | AD是∠BAC的平分线 | B. | ∠ADC=60° | ||
| C. | 点D是AB的垂直平分线上 | D. | 如果CD=2,AB=7,则可得S△ABD=14 |