题目内容
6.已知⊙O的半径为2,则⊙O的内接正三角形的面积为( )| A. | $\frac{3}{2}\sqrt{3}$ | B. | 3$\sqrt{3}$ | C. | 6$\sqrt{3}$ | D. | 12$\sqrt{3}$ |
分析 连接OB、OC,作OD⊥BC于D,则∠ODB=90°,BD=CD,∠OBC=30°,由含30°角的直角三角形的性质得出OD,由勾股定理求出BD,得出BC,△ABC的面积=3S△OBC,即可得出结果.
解答 解:如图所示:![]()
连接OB、OC,作OD⊥BC于D,
则∠ODB=90°,BD=CD,∠OBC=30°,
∴OD=$\frac{1}{2}$OB=1,
∴BD=$\sqrt{O{B}^{2}-O{D}^{2}}$=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
∴BC=2BD=2$\sqrt{3}$,
∴△ABC的面积=3S△OBC=3×$\frac{1}{2}$×BC×OD=3×$\frac{1}{2}$×2$\sqrt{3}$×1=3$\sqrt{3}$.
故选:B.
点评 本题考查了等边三角形的性质、垂径定理、勾股定理、三角形面积的计算;熟练掌握正三角形和圆的关系,并能进行推理计算是解决问题的关键.
练习册系列答案
相关题目
16.若(x-1)3=a3x3+a2x2+a1x+a0,那么a3+a2+a1=( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
17.
如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点A′的对应点A的纵坐标是1.5,则点A'的纵坐标是( )
| A. | 3 | B. | -3 | C. | -4 | D. | 4 |
14.
如图,线段AB的两个端点坐标分别为A(1,4),B(6,2),以原点O为位似中心,将线段AB缩小后得到线段A′B′.若AB=2A′B′,则端点B′的坐标为( )
| A. | (2,2) | B. | (3,2) | C. | (2,1) | D. | (3,1) |