题目内容

19.观察下列各式的运算:
$\frac{1}{\sqrt{2}+1}=\frac{(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}$-1,
$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{1×(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\frac{\sqrt{3}-\sqrt{2}}{3-2}$=$\sqrt{3}-\sqrt{2}$.
则(1)$\frac{1}{2+\sqrt{3}}$=2-$\sqrt{3}$,$\frac{1}{\sqrt{5}+2}$=$\sqrt{5}$-2;
(2)从上述运算中找出规律,并利用这-规律计算:
$(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{2+\sqrt{3}}+$…+$\frac{1}{\sqrt{2014}+\sqrt{2013}}$)($\sqrt{2014}+1$).

分析 根据分母有理化是指把分母中的根号化去解答即可.

解答 解:(1)$\frac{1}{2+\sqrt{3}}=2-\sqrt{3}$,$\frac{1}{\sqrt{5}+2}=\sqrt{5}-2$,
(2)
$(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{2+\sqrt{3}}+$…+$\frac{1}{\sqrt{2014}+\sqrt{2013}}$)($\sqrt{2014}+1$)
=$(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+2-\sqrt{3}+…+\sqrt{2014}-\sqrt{2013})$$(\sqrt{2014}+1)$
=$(\sqrt{2014}-1)(\sqrt{2014}+1)$
=2014-1
=2013,
故答案为:2-$\sqrt{3}$;$\sqrt{5}$-2.

点评 本题考查了分母有理化和二次根式的加减的应用,主要考查学生的阅读能力和计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网