题目内容
考点:勾股定理
专题:几何图形问题
分析:如图,过B作BE⊥AC,垂足为E交AD于F,由∠BAC=45°可以得到BE=AE,再根据已知条件可以证明△AFE≌△BCE,可以得到AF=BC=10,而∠FBD=∠DAC,又∠BDF=∠ADC=90°,由此可以证明△BDF∽△ADC,所以FD:DC=BD:AD,设FD长为x,则可建立关于x的方程,解方程即可求出FD,AD的长.
解答:
解:如图,过B作BE⊥AC,垂足为E交AD于F
∵∠BAC=45°
∴BE=AE,
∵∠C+∠EBC=90°,∠C+∠EAF=90°,
∴∠EAF=∠EBC,
在△AFE与△BCE中,
,
∴△AFE≌△BCE(ASA)
∴AF=BC=BD+DC=10,∠FBD=∠DAC,
又∵∠BDF=∠ADC=90°
∴△BDF∽△ADC
∴FD:DC=BD:AD
设FD长为x,则x:4=6:(x+10),解得x=2,即FD=2
∴AD=AF+FD=10+2=12.
答:AD长为12.
∵∠BAC=45°
∴BE=AE,
∵∠C+∠EBC=90°,∠C+∠EAF=90°,
∴∠EAF=∠EBC,
在△AFE与△BCE中,
|
∴△AFE≌△BCE(ASA)
∴AF=BC=BD+DC=10,∠FBD=∠DAC,
又∵∠BDF=∠ADC=90°
∴△BDF∽△ADC
∴FD:DC=BD:AD
设FD长为x,则x:4=6:(x+10),解得x=2,即FD=2
∴AD=AF+FD=10+2=12.
答:AD长为12.
点评:本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关题目