ÌâÄ¿ÄÚÈÝ
17£®ÏÈÔĶÁÀí½âÏÂÃæµÄÀýÌ⣬ÔÙ°´ÒªÇó½â´ðÏÂÁÐÎÊÌ⣺ÀýÌ⣺½âÒ»Ôª¶þ´Î²»µÈʽ£¨x+2£©£¨x-2£©£¾0
½â£º¡ß£¨x+2£©£¨x-2£©£¾0
ÓÉÓÐÀíÊýµÄ³Ë·¨·¨Ôò¡°Á½ÊýÏà³Ë£¬Í¬ºÅµÃÕý¡±£¬µÃ
$¢Ù\left\{\begin{array}{l}{x+2£¾0}\\{x-2£¾0}\end{array}\right.$ $¢Ú\left\{\begin{array}{l}{x+2£¼0}\\{x-2£¼0}\end{array}\right.$
½â²»µÈʽ×é¢Ù£¬µÃx£¾2£¬
½â²»µÈʽ×é¢Ú£¬µÃx£¼-2£¬
¡à£¨x+2£©£¨x-2£©£¾0µÄ½â¼¯Îªx£¾2»òx£¼-2£¬
¼´Ò»Ôª¶þ´Î²»µÈʽx2-4£¾0µÄ½â¼¯Îªx£¾2»òx£¼-2£®
£¨1£©Ò»Ôª¶þ´Î²»µÈʽx2-16£¾0µÄ½â¼¯Îªx£¾4»òx£¼-4£»
£¨2£©·Öʽ²»µÈʽ$\frac{x-1}{x-3}£¾0$µÄ½â¼¯Îªx£¾3»òx£¼1£»
£¨3£©½âÒ»Ôª¶þ´Î²»µÈʽx£¨2x-3£©£¼0£®
·ÖÎö £¨1£©¸ù¾Ý½âÌâ¹ý³ÌËù¸ø½â´ð²½Ö裬¿ÉÇó½â£»
£¨2£©½«²»µÈʽ$\frac{x-1}{x-3}£¾0$»¯Îª£¨x-1£©£¨x-3£©£¾0£¬¼Ì¶ø¿ÉµÃ½â£»
£¨3£©¸ù¾Ý½âÌâ¹ý³ÌËù¸ø½â´ð²½Ö裬¿ÉÇó½â£®
½â´ð ½â£º£¨1£©¡ßx2-16=£¨x+4£©£¨x-4£©£¬
¡àx2-16£¾0¿É»¯Îª£¨x-4£©£¨x-4£©£¾0£¬
ÓÉÓÐÀíÊýµÄ³Ë·¨·¨Ôò¡°Á½ÊýÏà³Ë£¬Í¬ºÅµÃÕý¡±£¬µÃ£º¢Ù$\left\{\begin{array}{l}{x+4£¾0}\\{x-4£¾0}\end{array}\right.$£¬¢Ú$\left\{\begin{array}{l}{x+4£¼0}\\{x-4£¼0}\end{array}\right.$£¬
½â²»µÈʽ×é¢Ù£¬µÃx£¾4£»
½â²»µÈʽ×é¢Ú£¬µÃx£¼-4£¬
¡àÒ»Ôª¶þ´Î²»µÈʽx2-16£¾0µÄ½â¼¯Îªx£¾4»òx£¼-4£»
¹Ê´ð°¸Îª£ºx£¾4»òx£¼-4£»
£¨2£©Ô²»µÈʽ¿É»¯Îª£º£¨x-1£©£¨x-3£©£¾0£¬
ÓÉÓÐÀíÊýµÄ³Ë·¨·¨Ôò¡°Á½ÊýÏà³Ë£¬Í¬ºÅµÃÕý¡±£¬µÃ£º¢Ù$\left\{\begin{array}{l}{x-1£¾0}\\{x-3£¾0}\end{array}\right.$£¬¢Ú$\left\{\begin{array}{l}{x-1£¼0}\\{x-3£¼0}\end{array}\right.$£¬
½â²»µÈʽ×é¢Ù£¬µÃx£¾3£»½â²»µÈʽ×é¢Ú£¬µÃx£¼1£¬
¡à£¨x+1£©£¨x+3£©£¾0µÄ½â¼¯Îªx£¾3»òx£¼1£»
¹Ê´ð°¸Îª£ºx£¾3»òx£¼1£»
£¨3£©x£¨2x-3£©£¼0£®
ÓÉÓÐÀíÊýµÄ³Ë·¨·¨Ôò¡°Á½ÊýÏà³Ë£¬ÒìºÅµÃ¸º¡±£¬µÃ£º¢Ù$\left\{\begin{array}{l}{x£¾0}\\{2x-3£¼0}\end{array}\right.$£¬¢Ú$\left\{\begin{array}{l}{x£¼0}\\{2x-3£¾0}\end{array}\right.$£¬
½â²»µÈʽ×é¢Ù£¬µÃ0£¼x£¾1.5£¬
½â²»µÈʽ×é¢Ú£¬Î޽⣬
¡à²»µÈʽx£¨2x-3£©£¼0µÄ½â¼¯Îª0£¼x£¼1.5£®
µãÆÀ ±¾Ì⿼²éÁËÒ»ÔªÒ»´Î²»µÈʽ×éµÄÓ¦Ó㬽â´ð±¾ÌâµÄ¹Ø¼üÊÇ×ÐϸÔĶÁ²ÄÁÏ£¬Àí½â½âÌâ¹ý³Ì£¬ÄѶÈÒ»°ã£®
| A£® | 18¡ã | B£® | 36¡ã | C£® | 72¡ã | D£® | 144¡ã |