题目内容
9.如图,下列图形都是由面积为1的正方形按照一定的规律组成的,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律,则第(20)个图形中面积为1的正方形的个数是230.分析 由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=$\frac{n(n+3)}{2}$,进一步求得第(20)个图形中面积为1的正方形的个数即可.
解答 解:第(1)个图形中面积为1的正方形有2个,
第(2)个图形中面积为1的图象有2+3=5个,
第(3)个图形中面积为1的正方形有2+3+4=9个,
…,
按此规律,
第n个图形中面积为1的正方形有2+3+4+…+(n+1)=$\frac{n(n+3)}{2}$个,
则第(20)个图形中面积为1的正方形的个数为2+3+4+5+6+…+21=230个.
故答案为:230.
点评 此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.
练习册系列答案
相关题目