题目内容

7.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为(  )
A.30°B.45°C.60°D.75°

分析 直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案.

解答 解:如图所示:由题意可得:∠1=∠2,AN=MN,∠MGA=90°,
则NG=$\frac{1}{2}$AM,故AN=NG,
则∠2=∠4,
∵EF∥AB,
∴∠4=∠3,
∴∠1=∠2=∠3=$\frac{1}{3}$×90°=30°,
∴∠DAG=60°.
故选:C.

点评 此题主要考查了翻折变换的性质以及平行线的性质,正确得出∠2=∠4是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网