题目内容
现有黑色三角形“▲”和“△”共2009个,按照一定规律排列如下:▲▲△△▲△▲▲△△▲△▲▲…,则黑色三角形有 个.
考点:规律型:图形的变化类
专题:
分析:通过黑白相间的三角形的变化可找出这样的规律,每6个一循环,其中有3个白的和3个黑的.然后求(2011)÷6=335…1,能确定剩余的1个是黑色三角,从而可计算出黑色三角的个数即1+335×3.
解答:解:因为2009÷6=334…5.余下的5个中有3个黑色三角形,
所以共有334×3+3=1005.
故答案为:1005.
所以共有334×3+3=1005.
故答案为:1005.
点评:此题主要考查了图形变化规律,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.
练习册系列答案
相关题目
若α,β是一元二次方程x2-3x+1=0的两根,则α2+β2的值是( )
| A、6 | B、7 | C、8 | D、9 |