题目内容

12.菱形ABCD的一条对角线的长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为(  )
A.16B.12C.12或16D.无法确定

分析 先求出方程x2-7x+12=0的两个根,再根据三角形的三边关系判断出符合题意的菱形的边AB,即可求出菱形的周长,

解答 解:∵x2-7x+12=0,
∴(x-3)(x-4)=0,
∴x1=3,x2=4,
当x1=3时,由菱形的对角线的一条对角线6和菱形的两边3,3不能组成三角形,即不存在菱形,舍去;
当x2=3时,由菱形的对角线的一条对角线6和菱形的两边4,4能组成三角形,即存在菱形,∴菱形的周长为4×4=16.
故选A

点评 此题是菱形的性质题,主要考查了菱形性质,三角形的三边关系,一元二次方程的解法,解本题的关键是确定出菱形的边长,难点是用三角形的三边关系判断符合条件的x的值,也是易错点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网