题目内容

16.已知方程组$\left\{\begin{array}{l}{2a-3b=7}\\{3a+5b=1}\end{array}\right.$的解为$\left\{\begin{array}{l}{a=2}\\{b=-1}\end{array}\right.$,则方程组$\left\{\begin{array}{l}{2(x-3)-3(y+2)=7}\\{3(x-3)+5(y+2)=1}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=5}\\{y=-3}\end{array}\right.$.

分析 根据题意可得方程组$\left\{\begin{array}{l}{x-3=2}\\{y+2=-1}\end{array}\right.$,解方程组即可求解.

解答 解:依题意有
$\left\{\begin{array}{l}{x-3=2}\\{y+2=-1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=5}\\{y=-3}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{x=5}\\{y=-3}\end{array}\right.$.

点评 此题主要考查了二元一次方程组的解,关键是根据题意得到方程组$\left\{\begin{array}{l}{x-3=2}\\{y+2=-1}\end{array}\right.$.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网