题目内容

4.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是(  )
A.15°B.30°C.60°D.75°

分析 首先连接OD,由CA,CD是⊙O的切线,∠ACD=30°,即可求得∠AOD的度数,又由OB=OD,即可求得答案.

解答 解:连接OD,
∵CA,CD是⊙O的切线,
∴OA⊥AC,OD⊥CD,
∴∠OAC=∠ODC=90°,
∵∠ACD=30°,
∴∠AOD=360°-∠C-∠OAC-∠ODC=150°,
∵OB=OD,
∴∠DBA=∠ODB=$\frac{1}{2}$∠AOD=75°.
故选D.

点评 此题考查了切线的性质以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网