题目内容

1.如图,在网格中建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD绕坐标原点顺时针方向旋转180°后得到四边形A1B1C1D1
(1)写出点D1的坐标(3,-1);
(2)将四边形A1B1C1D1平移,得到四边形A2B2C2D2,若点D2(4,5),画出平移后的图形;
(3)求点D旋转到点D1所经过的路线长.

分析 (1)利用第四象限点的坐标特征写出点D1的坐标;
(2)利用点D1与D2的坐标变化规律得到将四边形A1B1C1D1平移先向上平移6个单位,再向右平移1个单位得到四边形A2B2C2D2,然后利用平移规律画图;
(3)先利用勾股定理计算OD,然后根据弧长公式计算点D旋转到点D1所经过的路线长.

解答 解:(1)点D1的坐标(3,-1);
故答案为(3,-1);
(2)如图,四边形A2B2C2D2为所作;
(3)OD=$\sqrt{{1}^{2}+{3}^{2}}$=$\sqrt{10}$,
所以点D旋转到点D1所经过的路线长=$\frac{180•π•(\sqrt{10})^{2}}{180}$=$\sqrt{10}$π.

点评 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网