题目内容


如图,已知在R△ABC中,∠B=30°,∠ACB=90°,延长CA到O,使AO=AC,以O为圆心,OA长为半径作⊙O交BA延长线于点D,连接CD.

(1)求证:CD是⊙O的切线;

(2)若AB=4,求图中阴影部分的面积.


(1)证明:连接OD,

∵∠BCA=90°,∠B=30°,

∴∠OAD=∠BAAC=60°,

∵OD=OA,

∴△OAD是等边三角形,

∴AD=OA=AC,∠ODA=∠O=60°,

∴∠ADC=∠ACD=∠OAD=30°,

∴∠ODC=60°+30°=90°,

即OD⊥DC,

∵OD为半径,

∴CD是⊙O的切线;

(2)解:∵AB=4,∠ACB=90°,∠B=30°,

∴OD=OA=AC=AB=2,

由勾股定理得:CD===2

∴S阴影=S△ODC﹣S扇形AOD=×2×2=2﹣π.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网