题目内容

9.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,获利y元,当获利最大时,售价x=65元.

分析 本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值.

解答 解:设最大利润为w元,
则w=(x-30)(100-x)=-(x-65)2+1225,
∵-1<0,0<x<100,
∴当x=65时,二次函数有最大值1225,
∴售价x=65元时,利润最大.
故答案为:65.

点评 本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网