题目内容
计算
(1)
+
(2)
+
(3)
÷
-
(4)(2m2n-3)3(-mn-2)-2 (结果化为只含有正整数指数幂的形式)
(5)(-
)-2-23×0.125+20040+|-1|
(6)[
-
(
-x-y)]÷
.
(1)
| a2 |
| a+b |
| b2+2ab |
| a+b |
(2)
| 2 |
| x-1 |
| x-1 |
| 1-x |
(3)
| a |
| a-1 |
| a2-a |
| a2-1 |
| 1 |
| a-1 |
(4)(2m2n-3)3(-mn-2)-2 (结果化为只含有正整数指数幂的形式)
(5)(-
| 1 |
| 2 |
(6)[
| 2 |
| 3x |
| 2 |
| x+y |
| x+y |
| 3x |
| x-y |
| x |
考点:分式的混合运算
专题:
分析:(1)利用同底数的分式的加法法则即可求解;
(2)首先对第二个分式化简,然后通分相加即可求解;
(3)首先计算分式的除法,然后进行同分母的分式的减法计算即可;
(4)首先计算乘方,然后计算乘法,最后把负指数次幂转化为正指数次幂即可求解;
(5)首先计算乘方和绝对值,然后计算乘法,最后进行加减即可;
(6)首先计算中括号内的分式的乘法,然后把除法转化为乘法,计算乘法即可求解.
(2)首先对第二个分式化简,然后通分相加即可求解;
(3)首先计算分式的除法,然后进行同分母的分式的减法计算即可;
(4)首先计算乘方,然后计算乘法,最后把负指数次幂转化为正指数次幂即可求解;
(5)首先计算乘方和绝对值,然后计算乘法,最后进行加减即可;
(6)首先计算中括号内的分式的乘法,然后把除法转化为乘法,计算乘法即可求解.
解答:解:(1)原式=
=
=a+b;
(2)原式=
-1=
-
=
=
;
(3)原式=
•
-
=
-
=
;
(4)原式=8m6n-9•m-2 n4=8m4n-5=
;
(5)原式=4-8×0.125+1+1
=4-1+1+1
=5;
(5)原式=【
-
•
+
•(x+y)】•
=(
-
+2)•
=
.
| a2+b2+2ab |
| a+b |
| (a+b)2 |
| a+b |
(2)原式=
| 2 |
| x-1 |
| 2 |
| x-1 |
| x-1 |
| x-1 |
| 2-x+1 |
| x-1 |
| 3-x |
| x-1 |
(3)原式=
| a |
| a-1 |
| (a+1)(a-1) |
| a(a-1) |
| 1 |
| a-1 |
=
| a+1 |
| a-1 |
| 1 |
| a-1 |
=
| a |
| a-1 |
(4)原式=8m6n-9•m-2 n4=8m4n-5=
| 4m4 |
| n5 |
(5)原式=4-8×0.125+1+1
=4-1+1+1
=5;
(5)原式=【
| 2 |
| 3x |
| 2 |
| x+y |
| x+y |
| 3x |
| 2 |
| x+y |
| x |
| x-y |
=(
| 2 |
| 3x |
| 2 |
| 3x |
| x |
| x-y |
=
| 2x |
| x-y |
点评:本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.
练习册系列答案
相关题目