题目内容
20.| A. | $\frac{1}{4}$ | B. | $\frac{2}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{9}$ |
分析 利用正六边形的性质以及勾股定理得出AE的长,进而利用概率公式求出即可.
解答
解:连接AF,EF,AE,过点F作FN⊥AE于点N,
∵点A,B,C,D,E,F是边长为1的正六边形的顶点,
∴AF=EF=1,∠AFE=120°,
∴∠FAE=30°,
∴AN=$\frac{\sqrt{3}}{2}$,
∴AE=$\sqrt{3}$,同理可得:AC=$\sqrt{3}$,
故从任意一点,连接两点所得的所有线段一共有15种,任取一条线段,取到长度为$\sqrt{3}$的线段有6种情况,
则在连接两点所得的所有线段中任取一条线段,取到长度为$\sqrt{3}$的线段的概率为:$\frac{2}{5}$.
故选:B.
点评 此题主要考查了正多边形和圆,正确利用正六边形的性质得出AE的长是解题关键.
练习册系列答案
相关题目
12.等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为
( )
( )
| A. | 9 | B. | 10 | C. | 9或10 | D. | 8或10 |