题目内容
已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…
求(3-1)(3+1)(32+1)(34+1)•…•(332+1)+2的个位数字.
求(3-1)(3+1)(32+1)(34+1)•…•(332+1)+2的个位数字.
考点:尾数特征
专题:
分析:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…可知3n个位数字3、9、7、1四个数字一循环,利用平方差公式计算得到结果,再进一步判定即可.
解答:解:原式=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+2
=(32-1)(32+1)(34+1)(38+1)(316+1)(332+1)+2
=(34-1)(34+1)(38+1)(316+1)(332+1)+2
=(38-1)(38+1)(316+1)(332+1)+2
=(316-1)(316+1)(332+1)+2
=(332-1)(332+1)+2
=364-1+2
=364+1,
64÷4=16,
所以364与34个位数字相同为1,
因此(3-1)(3+1)(32+1)(34+1)•…•(332+1)+2的个位数字是1+1=2.
=(32-1)(32+1)(34+1)(38+1)(316+1)(332+1)+2
=(34-1)(34+1)(38+1)(316+1)(332+1)+2
=(38-1)(38+1)(316+1)(332+1)+2
=(316-1)(316+1)(332+1)+2
=(332-1)(332+1)+2
=364-1+2
=364+1,
64÷4=16,
所以364与34个位数字相同为1,
因此(3-1)(3+1)(32+1)(34+1)•…•(332+1)+2的个位数字是1+1=2.
点评:此题考查了平方差公式和乘方末尾数字的规律,熟练掌握平方差公式是解本题的关键.
练习册系列答案
相关题目
a、b、c为三角形ABC的三边,且a2+2ab=c2+2bc,则△ABC的形状是( )
| A、锐角三角形 |
| B、直角三角形 |
| C、任意三角形 |
| D、等腰三角形 |