题目内容

1.已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3
(1-x)(1+x+x2+x3)=1-x4
(1)观察以上各式并猜想:(1-x)(1+x+x2+…+xn)=1-xn+1.(n为正整数)
(2)根据你的猜想计算:
①(1-2)(1+2+22+23+24+25)=-63.
②2+22+23+…+2n=2n+1-2(n为正整数).
③(x-1)(x99+x98+x97+…+x2+x+1)=x100-1.
(3)通过以上规律请你进行下面的探索:
①(a-b)(a+b)=a2-b2
②(a-b)(a2+ab+b2)=a3-b3
③(a-b)(a3+a2b+ab2+b3)=a4-b4

分析 (1)根据题意易得(1-x)(1+x+x2+…+xn)=1-xn+1
(2)利用猜想的结论得到①(1-2)(1+2+22+23+24+25)=1-26=1-64=-63;
②先变形2+22+23+24+…+2n=2(1+2+22+23+24+…+2n-1)=-2(1-2)(1+2+22+23+24+…+2n-1),然后利用上述结论写出结果;
③先变形得到(x-1)(x99+x98+x97+…+x2+x+1)=-(1-x)(1+x+x2+…+x99),然后利用上述结论写出结果;
(3)根据规律易得①(a-b)(a+b)=a2-b2;②(a-b)(a2+ab+b2)=a3-b3;③(a-b)(a3+a2b+ab2+b3)=a4-b4

解答 解:(1)(1-x)(1+x+x2+…+xn)=1-xn+1
(2)①(1-2)(1+2+22+23+24+25)=1-26=1-64=-63;
②2+22+23+24+…+2n=2(1+2+22+23+24+…+2n-1)=-2(1-2)(1+2+22+23+24+…+2n-1)=-2(1-2n)=2n+1-2;
③(x-1)(x99+x98+x97+…+x2+x+1)=-(1-x)(1+x+x2+…+x99)=-(1-x100)=x100-1;
(3)①(a-b)(a+b)=a2-b2
②(a-b)(a2+ab+b2)=a3-b3
③(a-b)(a3+a2b+ab2+b3)=a4-b4
故答案为1-xn+1;-63;2n+1-2;x100-1;a2-b2,a3-b3,a4-b4

点评 此题考查了整式的混合运算及数字变化类问题,根据题意熟练得到数字变化规律是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网