ÌâÄ¿ÄÚÈÝ
12£®ÒÑÖª·´±ÈÀýº¯Êýy=$\frac{k-1}{x}$£¨kΪ³£Êý£¬k¡Ù1£©£®£¨1£©ÆäͼÏóÓëÕý±ÈÀýº¯Êýy=xµÄͼÏóµÄÒ»¸ö½»µãΪP£¬ÈôµãPµÄ×Ý×ø±êÊÇ2£¬ÇókµÄÖµ£»
£¨2£©ÈôÔÚÆäͼÏóµÄÿһ֧ÉÏ£¬yËæxµÄÔö´ó¶ø¼õС£¬ÇókµÄȡֵ·¶Î§£»
£¨3£©ÈôÆäͼÏóµÄһ֧λÓÚµÚ¶þÏóÏÞ£¬ÔÚÕâÒ»Ö§ÉÏÈÎÈ¡Á½µãA£¨x1¡¢x2£©¡¢B£¨x2¡¢y2£©£¬µ±y1£¾y2ʱ£¬ÊԱȽÏx1Óëx2µÄ´óС£»
£¨4£©ÈôÔÚÆäͼÏóÉÏÈÎȡһµã£¬ÏòxÖáºÍyÖá×÷´¹Ïߣ¬ÈôËùµÃ¾ØÐÎÃæ»ýΪ6£¬ÇókµÄÖµ£®
·ÖÎö £¨1£©ÉèµãPµÄ×ø±êΪ£¨m£¬2£©£¬ÓɵãPÔÚÕý±ÈÀýº¯Êýy=xµÄͼÏóÉÏ¿ÉÇó³ömµÄÖµ£¬½ø¶øµÃ³öPµã×ø±ê£¬ÔÙ¸ù¾ÝµãPÔÚ·´±ÈÀýº¯Êýy=$\frac{k-1}{x}$µÄͼÏóÉÏ£¬ËùÒÔ2=$\frac{k-1}{2}$£¬½âµÃk=5£»
£¨2£©ÓÉÓÚÔÚ·´±ÈÀýº¯Êýy=$\frac{k-1}{x}$ͼÏóµÄÿһ֧ÉÏ£¬yËæxµÄÔö´ó¶ø¼õС£¬¹Êk-1£¾0£¬Çó³ökµÄȡֵ·¶Î§¼´¿É£»
£¨3£©·´±ÈÀýº¯Êýy=$\frac{k-1}{x}$ͼÏóµÄһ֧λÓÚµÚ¶þÏóÏÞ£¬¹ÊÔڸú¯ÊýͼÏóµÄÿһ֧ÉÏ£¬yËæxµÄÔö´ó¶øÔö´ó£¬ËùÒÔA£¨x1£¬y1£©ÓëµãB£¨x2£¬y2£©Ôڸú¯ÊýµÄµÚ¶þÏóÏÞµÄͼÏóÉÏ£¬ÇÒy1£¾y2£¬¹Ê¿ÉÖªx1£¾x2£»
£¨4£©ÀûÓ÷´±ÈÀýº¯ÊýµÄ±ÈÀýϵÊýµÄ¼¸ºÎÒâÒåÖ±½Óд³ö´ð°¸¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬ÉèµãPµÄ×ø±êΪ£¨m£¬2£©
¡ßµãPÔÚÕý±ÈÀýº¯Êýy=xµÄͼÏóÉÏ£¬
¡à2=m£¬¼´m=2£®
¡àµãPµÄ×ø±êΪ£¨2£¬2£©£®
¡ßµãPÔÚ·´±ÈÀýº¯Êýy=$\frac{k-1}{x}$µÄͼÏóÉÏ£¬
¡à2=$\frac{k-1}{2}$£¬½âµÃk=5£®
£¨2£©¡ßÔÚ·´±ÈÀýº¯Êýy=$\frac{k-1}{x}$ͼÏóµÄÿһ֧ÉÏ£¬yËæxµÄÔö´ó¶ø¼õС£¬
¡àk-1£¾0£¬½âµÃk£¾1£®
£¨3£©¡ß·´±ÈÀýº¯Êýy=$\frac{k-1}{x}$ͼÏóµÄһ֧λÓÚµÚ¶þÏóÏÞ£¬
¡àÔڸú¯ÊýͼÏóµÄÿһ֧ÉÏ£¬yËæxµÄÔö´ó¶øÔö´ó£®
¡ßµãA£¨x1£¬y1£©ÓëµãB£¨x2£¬y2£©Ôڸú¯ÊýµÄµÚ¶þÏóÏÞµÄͼÏóÉÏ£¬ÇÒy1£¾y2£¬
¡àx1£¾x2£®
£¨4£©¡ßÔÚÆäͼÏóÉÏÈÎȡһµã£¬ÏòÁ½×ø±êÖá×÷´¹Ïߣ¬µÃµ½µÄ¾ØÐÎΪ6£¬
¡à|k|=6£¬
½âµÃ£ºk=¡À6£®
µãÆÀ ±¾Ì⿼²éµÄÊÇ·´±ÈÀýº¯ÊýÓëÒ»´Îº¯ÊýµÄ½»µãÎÊÌâ¼°·´±ÈÀýº¯ÊýµÄÐÔÖÊ£¬ÊìÖª·´±ÈÀýº¯ÊýµÄÔö¼õÐÔÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®
| A£® | 3 | B£® | -3 | C£® | 7 | D£® | -7 |
| A£® | AB=AC | B£® | BD=CD | C£® | ¡ÏBAD=¡ÏCAD | D£® | ¡ÏB=¡ÏC |