题目内容
如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.
(1)求证:△ACD≌△EDC;
(2)请探究△BDE的形状,并说明理由.
在Rt△ABC中,∠C=90°.
(1)求作:∠A的平分线AD,AD交BC于点D;(保留作图痕迹,不写作法)
(2)若点D恰好在线段AB的垂直平分线上,求∠A的度数.
如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.
【答案】该建筑物的高度为:()米.
【解析】试题分析:首先由题意可得, 由AE?BE=AB=m米,可得,继而可求得CE的长,又由测角仪的高度是米,即可求得该建筑物的高度.
试题解析:由题意得:
∵AE?BE=AB=m米,
(米),
∵DE=n米,
(米).
∴该建筑物的高度为:米
【题型】解答题【结束】23
实验数据显示,一般成人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间x (时)的关系可近似地用二次函数y=-200x2+400x刻画;1.5时后(包括1.5时)y与x可近似地用反比例函数(k>0)刻画(如图所示).
(1)根据上述数学模型计算:喝酒后几时血液中的酒精含量达到最大值?最大值为多少
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:30在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.
已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为( )
A. B. 2 C. D.
如图所示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.
(1)求证:CE∥BF;
(2)若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).
如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D的长度为_____.
观察以下一列数的特点:0,1,﹣4,9,﹣16,25,…,则第11个数是( )
A. ﹣121 B. ﹣100 C. 100 D. 121
如图,已知AC=4,求AB和BC的长.
如图所示的几何体的俯视图为( )
A. B. C. D.