题目内容

如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.

① 求证:△ABE≌△CBD;

② 若∠CAE=30°,求∠BDC的度数.

①证明见解析②∠BDC=75° 【解析】试题分析:(1)利用“边角边”证明△ABE≌△CBD即可;②先根据等腰直角三角形的锐角都是45°求出∠CAB,再求出∠BAE,然后根据全等三角形对应角相等求出∠BCD,再根据直角三角形两锐角互余其解即可; 试题解析: (1)证明:∵∠ABC=90°,D为AB延长线上一点, ∴∠ABE=∠CBD=90°, 在△ABE和△CBD中,...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网