题目内容

已知四个有理数a,b,x,y同时满足以下关系式:b>a,x+y=a+b,y﹣x<a﹣b.请将这四个有理数按从小到大的顺序用“<”连接起来是

y<a<b<x 【解析】试题分析:由x+y=a+b得出y=a+b﹣x,x=a+b﹣y,求出b<x,y<a,即可得出答案. ∵x+y=a+b, ∴y=a+b﹣x,x=a+b﹣y, 把y=a=b﹣x代入y﹣x<a﹣b得:a+b﹣x﹣x<a﹣b, 2b<2x, b<x①, 把x=a+b﹣y代入y﹣x<a﹣b得:y﹣(a+b﹣y)<a﹣b, 2y<2a, y<a②, ∵b>a③, ...
练习册系列答案
相关题目

等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是(  )

A. x<6 B. 6<x<12 C. 0<x<12 D. x>12

B 【解析】等腰三角形的周长为24cm,腰长为xcm,则底边长为24-2x, 根据三边关系,x+x>24-2x,解得,x>6; x-x<24-2x,解得,x<12, 所x的取值范围是6<x<12. 故选:C.

已知二次函数y=2x2+bx﹣1.

(1)求证:无论b取什么值,二次函数y=2x2+bx﹣1图象与x轴必有两个交点.

(2)若两点P(﹣3,m)和Q(1,m)在该函数图象上.

①求b、m的值;

②将二次函数图象向上平移多少单位长度后,得到的函数图象与x轴只有一个公共点?

(1)无论b取什么值,二次函数y=2x2+bx﹣1图象与x轴必有两个交点. (2)b=4,m=5;(3)二次函数图象向上平移3个单位 【解析】 试题分析:(1)先计算判别式的值,再利用非负数的性质可判断△=>0,然后根据判别式的意义可判断抛物线与x轴必有两个交点; (2)①先利用抛物线的对称性可确定抛物线的对称轴方程,从而可求出b的值,然后计算自变量为1所对应的函数值即可得...

如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为(  )

A. B. C. D.

B 【解析】试题分析:∵a<0, ∴抛物线的开口方向向下, 故第三个选项错误; ∵c<0, ∴抛物线与y轴的交点为在y轴的负半轴上, 故第一个选项错误; ∵a<0、b>0,对称轴为x=>0, ∴对称轴在y轴右侧, 故第四个选项错误. 故选B.

已知2a-3x+1=0,3b-2x-16=0,且a≤4<b,求x的取值范围.

【解析】【解析】 由已知得:a=,b= 又∵a≤4<b ∴ 解此不等式组,得 -2<x≤3.

不等式-1的正整数解的个数是( )

A. 1个 B. 2个 C. 3个 D. 4个

D 【解析】根据不等式的解法,去分母,得3(x+1)>2(2x+2)-6,去括号得3x+3>4x+4-6,移项合并同类项,x<5,可得其正整数解为1、2、3、4,共4个. 故选:D.

如图所示,在梯形ABCD中.AD∥BC,AB=DC,BD⊥DC于点D,且∠C=60°.若AD=5㎝.则梯形的腰长为________㎝.

5 【解析】【解析】 ∵BD⊥DC于D,且∠C=60°,∴∠DBC=30°.∵AD∥BC,AB=DC,∴∠ABC=∠C=60°,∴∠ADB=∠DBC=∠ABD=30°,∴AB=AD=5cm.故答案为:5.

如图,直线MN过□ABCD的顶点D,过A,B,C三点,分别作MN的垂线,垂足分别是E,F,G.

求证:DE=FG.

答案见解析 【解析】试题分析:作CH⊥BF与H.可证△AED≌△BHC,得到ED=HC,再由平行线间的距离处处相等得到FG=CH,即可得到结论. 试题解析:证明:作CH⊥BF与H. ∵AE⊥MN,BF⊥MN,∴AE∥BF,∴∠EAD+∠DAB+∠ABF=180°. ∵ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAB+∠ABF+∠HBC=180°,∴∠EAD=∠HB...

下列说法中,错误的是(  )

A. 不等式x<2的正整数解有一个

B. -2是不等式2x-1<0的一个解

C. 不等式-3x>9的解集是x>-3

D. 不等式x<10的整数解有无数个

C 【解析】试题分析:解不等式求得B,C即可选项的不等式的解集,即可判定C错误,又由不等式解的定义,判定B正确,然后由不等式整数解的知识,即可判定A与D正确,则可求得答案. 【解析】 A、不等式x<2的正整数解只有1,故A正确; B、2x﹣1<0的解集为x<,所以﹣2是不等式2x﹣1<0的一个解,故B正确; C、不等式﹣3x>9的解集是x<﹣3,故C错误; D、不等...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网