ÌâÄ¿ÄÚÈÝ
5£®¶¨Ò壺ÔÚÆ½ÐÐËıßÐÎÖУ¬ÈôÓÐÒ»Ìõ¶Ô½ÇÏßÊÇÒ»±ßµÃÁ½±¶£¬Ôò³ÆÕâ¸öƽÐÐËıßÐÎΪÁ½±¶ËıßÐΣ¬ÆäÖÐÕâÌõ¶Ô½ÇÏß½Ð×öÁ½±¶¶Ô½ÇÏߣ¬ÕâÌõ±ß½Ð×öÁ½±¶±ß£®Èçͼ1£¬ËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ¬BE¡ÎAC£¬ÑÓ³¤DC½»BEÓÚµãE£¬Á¬½áAE½»BCÓÚµãF£¬AB=1£¬AD=m£®
£¨1£©Èô¡ÏABC=90¡ã£¬Èçͼ2£®
¢Ùµ±m=2ʱ£¬ÊÔ˵Ã÷ËıßÐÎABECÊÇÁ½±¶ËıßÐΣ»
¢ÚÊÇ·ñ´æÔÚÖµm£¬Ê¹µÃËıßÐÎABCDÊÇÁ½±¶ËıßÐΣ¬Èô´æÔÚ£¬Çó³ömµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨2£©Èçͼ1£¬ËıßÐÎABCDÓëËıßÐÎABEC¶¼ÊÇÁ½±¶ËıßÐΣ¬ÆäÖÐBDÓëAEΪÁ½±¶¶Ô½ÇÏߣ¬ADÓëACΪÁ½±¶±ß£¬ÇómµÄÖµ£®
·ÖÎö £¨1£©¢ÙÓÉÆ½ÐÐËıßÐεÄÐÔÖʵóöAB¡ÎDE£¬Ö¤³öËıßÐÎABECÊÇÆ½ÐÐËıßÐΣ¬Çó³öBC=2AB£¬¼´¿ÉµÃ³öËıßÐÎABECÊÇÁ½±¶ËıßÐΣ»
¢Úµ±AC=2CDʱ£¬ËıßÐÎABCDÊÇÁ½±¶ËıßÐΣ¬´ËʱAD=m=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$£»µ±AC=2ADʱ£¬ËıßÐÎABCDÊÇÁ½±¶ËıßÐΣ¬Óɹ´¹É¶¨ÀíµÃ³ö·½³Ìm2+12=£¨2m£©2£¬½â·½³Ì¼´¿É£»
£¨2£©ÓÉÁ½±ßËıßÐε͍ÒåµÃ³öAD=DG£¬µÃ³ö¡ÏDAG=¡ÏAGD£¬Í¬ÀíAC=AF£¬µÃ³ö¡ÏACF=¡ÏAFC£¬Ö¤³ö¡ÏADG=¡ÏCAF£¬$\frac{AD}{BD}$=$\frac{AC}{AE}$£¬µÃ³ö¡÷ADB¡×¡÷ACE£¬ÓÉAB=CE£¬µÃ³ö¡÷ADB¡Õ¡÷ACE£¬ÓÉÈ«µÈÈý½ÇÐεÄÐÔÖʵóöAC=AD£¬×÷DM¡ÍACÓÚM£¬ÉèAM=x£¬ÔòAC=AD=4x£¬Óɹ´¹É¶¨ÀíµÃ£ºDM=$\sqrt{15}$x£¬CD=2$\sqrt{6}$x£¬ÓÉCD=AB=1µÃ³ö·½³Ì£¬½â·½³Ì¼´¿É£®
½â´ð £¨1£©¢ÙÖ¤Ã÷£º¡ßËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ¬
¡àAB¡ÎDE£¬
¡ßBE¡ÎAC£¬
¡àËıßÐÎABECÊÇÆ½ÐÐËıßÐΣ¬
¡ßAB=1£¬BC=m=2£¬
¡àBC=2AB£¬
¡àËıßÐÎABECÊÇÁ½±¶ËıßÐΣ»
¢Ú½â£º´æÔÚ£¬ÀíÓÉÈçÏ£º
µ±AC=2CDʱ£¬ËıßÐÎABCDÊÇÁ½±¶ËıßÐΣ¬´ËʱAD=m=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$£»
µ±AC=2ADʱ£¬ËıßÐÎABCDÊÇÁ½±¶ËıßÐΣ¬
ÔòÓÐm2+12=£¨2m£©2£¬
½âµÃ£ºm=¡À$\frac{\sqrt{3}}{3}$£¨¸ºÖµÉáÈ¥£©£¬
¡àm=$\frac{\sqrt{3}}{3}$£»
¡àmµÄֵΪ$\sqrt{3}$»ò$\frac{\sqrt{3}}{3}$ʱ£¬ËıßÐÎABCDÊÇÁ½±¶ËıßÐΣ»
£¨2£©½â£º¡ßËıßÐÎABCDÊÇÁ½±¶ËıßÐΣ¬BDΪÁ½±¶¶Ô½ÇÏߣ¬ADΪÁ½±¶±ß£¬
¡àAD=DG£¬
¡à¡ÏDAG=¡ÏAGD£¬
¡ßËıßÐÎABECÊÇÁ½±¶ËıßÐΣ¬AEΪÁ½±¶¶Ô½ÇÏߣ¬ACΪÁ½±¶±ß£¬
¡àAC=AF£¬
¡à¡ÏACF=¡ÏAFC£¬
ÓÖ¡ß¡ÏDAG=¡ÏACF£¬
¡à¡ÏDAG=¡ÏAGD=¡ÏACF=¡ÏAFC£¬![]()
¡à¡ÏADG=¡ÏCAF£¬
ÓÖ¡ß$\frac{AD}{BD}$=$\frac{1}{2}$£¬$\frac{AC}{AE}$=$\frac{1}{2}$£¬
¡à$\frac{AD}{BD}$=$\frac{AC}{AE}$£¬
¡à¡÷ADB¡×¡÷ACE£¬
ÓÖ¡ßAB=CE£¬
¡àÏàËÆ±ÈΪ1£¬
¡à¡÷ADB¡Õ¡÷ACE£¬
¡àAC=AD£¬
×÷DM¡ÍACÓÚM£¬Èçͼ1Ëùʾ£º
ÉèAM=x£¬ÔòAC=AD=4x£¬
ÔÚRt¡÷ADMÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºDM=$\sqrt{15}$x£¬
ÔÚRt¡÷DMCÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºCD=2$\sqrt{6}$x£¬
¡ßCD=AB=1£¬
¡à2$\sqrt{6}$x=1£¬
¡àx=$\frac{\sqrt{6}}{12}$£¬
¡àAD=4x=$\frac{\sqrt{6}}{3}$£¬
¼´m=$\frac{\sqrt{6}}{3}$£®
µãÆÀ ±¾ÌâÊÇËıßÐÎ×ÛºÏÌâÄ¿£¬¿¼²éÁËÆ½ÐÐËıßÐεÄÐÔÖÊ¡¢Á½±¶ËıßÐεÄÅж¨ÓëÐÔÖÊ¡¢¹´¹É¶¨Àí¡¢ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖʵÈ֪ʶ£»±¾Ìâ×ÛºÏÐÔÇ¿£¬ÓÐÒ»¶¨ÄѶȣ®
| A£® | 60¦Ð | B£® | 65¦Ð | C£® | 78¦Ð | D£® | 156¦Ð |
| A£® | |a|+|b| | B£® | |a|-|b| | C£® | |a+b| | D£® | |a-b| |