题目内容

14.将函数y=ax2+c(a>0)的图象向左平移1个单位,平移后的图象过点(-2,y1),(-$\frac{4}{3}$,y2),(1,y3),则y1、y2、y3的大小关系是y2<y1<y3

分析 求出抛物线的对称轴,求出(1,y3)关于对称轴的对称点的坐标,根据抛物线的开口方向和增减性,即可求出答案.

解答 解:将函数y=ax2+c(a>0)的图象向左平移1个单位,
对称轴是直线x=-1,
即二次函数的开口向上,对称轴是直线x=-1,
即在对称轴的左侧y随x的增大而减小,
点(1,y3)关于直线x=-1的对称点是(-3,y3),
∵-3<-2<-$\frac{4}{3}$,
∴y2<y1<y3
故答案为:y2<y1<y3

点评 本题考查了二次函数图象与几何变换,二次函数图象上点的坐标特征,主要考查学生的观察能力和分析能力,本题比较典型,但是一道比较容易出错的题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网