题目内容

4.如图所示是二次函数y=ax2+bx+c(a≠0)图象的一部分,直线x=-1是对称轴,有下列判断:①b-2a=0,②4a-2b+c<0,③a-b+c=-9a,④若(-3,y1),($\frac{3}{2}$,y2)是抛物线上的两点,则y1<y2.其中正确的是(  )
A.①②③B.①③C.①④D.①③④

分析 根据二次函数的开口方向,与x轴交点的个数,与y轴交点的位置、对称轴的位置即可判断.

解答 解:①∵对称轴为x=-1,
∴-$\frac{b}{2a}$=-1,
∴b-2a=0,故①正确;
由于对称轴为x=-1,
∴(2,0)的对称点为(-4,0)
∴当-4<x<2时,y>0,
令x=-2代入y=ax2+bx+c
∴y=4a-2b+c>0,故②错误
令x=2代入y=ax2+bx+c,
∴4a+2b+c=0,
∵b=2a,
∴c=-4a-2b=-4a-4a=-8a,
令x=-1代入y=ax2+bx+c,
∴y=a-b+c=a-2a-8a=-9a,故③正确,
∵对称轴为x=-1,
∴(-3,y1)关于x=-1的对称点为(1,y1
∵x>-1时,y随着x的增大而减少,
∴当1<$\frac{3}{2}$时,
∴y1>y2,故④错误,
故选(B)

点评 本题考查二次函数的性质,解题的关键是熟练运用抛物线的图象来判断待定系数a、b、c之间的关系,本题属于中等题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网