题目内容
如图,BE∥AO,∠1=∠2,OE⊥OA于点O,EH⊥CO于点H,那么∠5=∠6,为什么?
“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为( )
A. 3 B. 4 C. 5 D. 6
如图,四边形ABCD的两条对角线AC,BD互相垂直,A1 , B1 , C1 , D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为________.
如图,已知∠1=250,∠2=450, ∠3=300,∠4=100.求证:AB//CD.
探究题:
(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?
(2)若将点E移至图2的位置,此时∠B,∠D,∠E之间有什么关系?
(3)若将点E移至图3的位置,此时∠B,∠D,∠E之间的关系又如何?
(4)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?
如图,已知AD//BE,∠1=∠2.求证:∠A=∠E.
如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.
一个正偶数的算术平方根是,那么与这个正偶数相邻的下一个正偶数的算术平方根是( )
A. B. C. D.
如图,在△ABC中,∠C=90°,AB=10,BC=8,P、Q分别是AB、BC边上的点,且AP=BQ=a (其中0<a<8).
(1)若PQ⊥BC,求a的值;
(2)若PQ=BQ,把线段CQ绕着点Q旋转180°,试判别点C的对应点C’是否落在线段QB上?请说明理由.