题目内容

阅读以下内容,并回答问题:
若一个三角形的两边平方和等于第三边平方的两倍,我们称这样的三角形为奇异三角形.
(1)命题“等边三角形一定是奇异三角形”是
 
命题(填“真”或“假”);
(2)在△ABC中,已知∠C=90°,△ABC的内角∠A、∠B、∠C所对边的长分别为a、b、c,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
(3)如图,已知AB是⊙O的直径,C是⊙O上一点(点C与点A、B不重合),D是半圆
ADB
的中点,C、D在直径AB的两侧,若存在点E,使AE=AD,CB=CE.求证:△ACE是奇异三角形.
考点:圆心角、弧、弦的关系,勾股定理
专题:阅读型
分析:(1)直接根据奇异三角形的定义直接得出结论;
(2)先根据勾股定理得出a2+b2=c2,再由Rt△ABC是奇异三角形,且b>a可知a2+c2=2b2,把a当作已知条件表示出b,c的值,进而可得出结论;
(3)连接BD,根据圆周角定理得出∠ACB=∠ADB=90°,在Rt△ACB与在Rt△ADB中可得出AC2+BC2=AB2,AD2+BD2=AB2,根据点D是半圆
ADB
的中点,得出
AD
=
BD
.故可得出AD=BD.通过等量代换可得出AC2+CB2=2AD2.再由CB=CE,AE=AD可得出AC2+CE2=2AE2故可得出结论.
解答:解:(1)∵若一个三角形的两边平方和等于第三边平方的两倍,我们称这样的三角形为奇异三角形,
∴等边三角形一定是奇异三角形是真命题.
故答案为:真;

(2)∵∠C=90°,
∴a2+b2=c2①.
∵Rt△ABC是奇异三角形,且b>a,
∴a2+c2=2b2②.
由①②得:b=
2
a,c=
3
a.
∴a:b:c=1:
2
3


(3)连接BD.
∵AB是⊙O的直径,
∴∠ACB=∠ADB=90°.
在Rt△ACB中,AC2+BC2=AB2
在Rt△ADB中,AD2+BD2=AB2
∵点D是半圆
ADB
的中点,∴
AD
=
BD

∴AD=BD.
∴AB2=AD2+BD2=2AD2
∴AC2+CB2=2AD2
又∵CB=CE,AE=AD,
∴AC2+CE2=2AE2
∴△ACE是奇异三角形.
点评:本题考查的是奇异三角形的定义,熟知勾股定理及等边三角形的性质是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网