ÌâÄ¿ÄÚÈÝ
8£®£¨1£©ÇóÒ»´Îº¯ÊýµÄ½âÎöʽ£¬²¢Ö±½Óд³öʹµÃy1¡Üy2µÄxµÄȡֵ·¶Î§£»
£¨2£©É躯Êýy3=$\frac{a}{x}$£¨x£¾0£©µÄͼÏóÓëy2=-$\frac{3}{x}$£¨x£¼0£©µÄͼÏó¹ØÓÚyÖá¶Ô³Æ£¬ÔÚy3=$\frac{a}{x}$£¨x£¾0£©µÄͼÏóÉÏȡһµãP£¨PµãµÄºá×ø±ê´óÓÚ2£©£¬¹ýP×÷PQ¡ÍxÖᣬ´¹×ãΪQ£¬ÈôËıßÐÎBCQPµÄÃæ»ýµÈÓÚ2£¬ÇóPµãµÄ×ø±ê£®
·ÖÎö £¨1£©ÔÚÒ»´Îº¯ÊýÖÐÁîy=0¿ÉÇóµÃx=2£¬¿ÉÇóµÃBµã×ø±ê£¬¹ýA×÷AH¡ÍxÖáÓÚH£¬ÓÉÌõ¼þ¿ÉÇóµÃAµã×ø±ê£¬´úÈëÒ»´Îº¯Êý½âÎöʽ¿ÉÇóµÃkµÄÖµ£¬¿ÉÇóµÃÒ»´Îº¯Êý½âÎöʽ£¬½áºÏͼÏó¿ÉÇóµÃy1¡Üy2µÄxµÄȡֵ·¶Î§£»
£¨2£©ÓɶԳÆÐÔ¿ÉÇóµÃy3=$\frac{a}{x}$µÄ½âÎöʽ£¬ÉèPµã×ø±êΪ£¨m£¬n£©£¬Á¬½ÓOP£¬ÀûÓÃËıßÐÎBCQPµÄÃæ»ý¿ÉÇóµÃmµÄÖµ£¬¿ÉÇóµÃPµã×ø±ê£®
½â´ð ½â£º£¨1£©ÔÚy1=kx+2ÖУ¬Áîx=0£¬¿ÉÇóµÃy1=2£¬
¡àB£¨0£¬2£©£¬
Èçͼ1£¬×÷AH¡ÍxÖáÓÚH£¬![]()
¡ßBC=2AB£¬
¡àAC=$\frac{3}{2}$BC£¬
¡àAH=$\frac{3}{2}$OB=3£¬
¡àA£¨-1£¬3£©£¬
´úÈëy1=kx+2£¬¿ÉµÃ3=-k+2£¬½âµÃk=-1£¬
¡àÒ»´Îº¯Êý½âÎöʽΪy1=-x+2£¬
¡ßAµã×ø±êΪ£¨-1£¬3£©£¬
¡àµ±-1¡Üx£¼0ʱ£¬y1¡Üy2£»
£¨2£©¡ßy3=$\frac{a}{x}$£¨x£¾0£©µÄͼÏóÓëy2=-$\frac{3}{x}$£¨x£¼0£©µÄͼÏó¹ØÓÚyÖá¶Ô³Æ£¬
¡ày3=$\frac{3}{x}$£¨x£¾0£©£¬
ÉèP£¨m£¬n£©£¬ÆäÖÐm£¾2£¬Èçͼ2£¬Á¬½ÓOP£¬![]()
ÔòSËıßÐÎBOQP=S¡÷BOP+S¡÷POQ=S¡÷BOC+SËıßÐÎBCQP£¬
¼´$\frac{1}{2}$¡Á2¡Ám+$\frac{1}{2}$¡Á3=$\frac{1}{2}$¡Á2¡Á2+2£¬½âµÃm=$\frac{5}{2}$£¬
¡àP£¨$\frac{5}{2}$£¬$\frac{6}{5}$£©£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÒ»´Îº¯ÊýÓë·´±ÈÀýº¯ÊýµÄ½»µãÎÊÌâ£¬ÕÆÎÕÁ½º¯ÊýͼÏóµÄ½»µã×ø±êÂú×ãÿ¸öº¯Êý½âÎöʽÊǽâÌâµÄ¹Ø¼ü£¬×¢ÒâÊýÐνáºÏ˼ÏëµÄÓ¦Óã®
| A£® | 2£¬2 | B£® | -2£¬2 | C£® | -2£¬-2 | D£® | 2£¬-2 |