题目内容
20.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表示活动进行中的一组统计数据:| 摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
| 摸到白球的次数m | 58 | 96 | 116 | 295 | 484 | 601 |
| 摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
| A. | 8 | B. | 9 | C. | 12 | D. | 13 |
分析 根据利用频率估计概率,由于摸到白球的频率稳定在0.6左右,由此可估计摸到白球的概率为0.6,进而可估计口袋中白球的个数.
解答 解:根据摸到白球的频率稳定在0.6左右,
所以摸一次,摸到白球的概率为0.6,则可估计口袋中白球的个数约为20×0.6=12(个)
故选C.
点评 本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率;用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确,求出摸到白球的概率是解题关键.
练习册系列答案
相关题目
12.(3x+4y-6)2展开式的常数项是( )
| A. | -12 | B. | -6 | C. | 9 | D. | 36 |