题目内容

11.如图,在△ABC中,∠CAB=62°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为56°.

分析 先根据平行线的性质得∠ACC′=∠CAB=62°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠AC′C=62°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.

解答 解:∵CC′∥AB,
∴∠ACC′=∠CAB=62°
∵△ABC在平面内绕点A旋转到△AB′C′的位置,
∴∠CAC′等于旋转角,AC=AC′,
∴∠ACC′=∠AC′C=62°,
∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×62°=56°,
∴旋转角为56°.
故答案为56°.

点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网