题目内容

16.如图,已知在矩形ABCD中,BC=2CD=2a,点E在边CD上,在矩形ABCD的左侧作矩形ECGF,使CG=2GF=2b,连接BD,CF,连结AF交BD于点H.

(1)求证:BD∥CF;
(2)求证:H是AF的中点;
(3)连结CH,若HC⊥BD,求a:b的值.

分析 (1)由矩形的性质可知∠G=∠DCB=90°,由BC=2CD=2a,CG=2GF=2b,可知$\frac{FG}{DC}=\frac{GC}{BC}=\frac{b}{a}$,依据两边对应成比例且夹角相等的两个三角形相似可知:△FGC∽△DCB,由相似三角形的性质可知∠FCG=∠DBC,由平行线的判定定理可知:BD∥CF;
(2)如图1所示:连接AC,交BD于点O.由矩形的性质可知:OC=OA,由平行线分线段成比例定理可知HF=AH;
(3)如图2所示:连接CH,CA,AC与BD交于点O.由勾股定理可知:FC=$\sqrt{5}$b,AC=$\sqrt{5}$a,由矩形的对角线的性质可知DB=AC=$\sqrt{5}$a,CO=$\frac{1}{2}$AC=$\frac{\sqrt{5}}{2}a$.由(2)可知HO是△AFC的中位线,由三角形中位线的性质可知:HO=$\frac{\sqrt{5}}{2}b$.在△BCD中,利用面积法可求得CH=$\frac{2\sqrt{5}a}{5}$,最后在△COH中,由勾股定理得到:($\frac{\sqrt{5}}{2}b$)2+($\frac{2\sqrt{5}a}{5}$)2=($\frac{\sqrt{5}}{2}$a)2,从而可求得a:b=$\frac{5}{3}$.

解答 解:(1)∵四边形ABCD、四边形ECGF均为矩形,
∴∠G=∠DCB=90°.
∵BC=2CD=2a,CG=2GF=2b,
∴$\frac{FG}{DC}=\frac{GC}{CB}=\frac{b}{a}$.
∴△FGC∽△DCB.
∴∠FCG=∠DBC.
∴BD∥CF.
(2)如图1所示:连接AC,交BD于点O.

∵四边形ABCD为矩形,
∴OC=OA.
又∵FC∥BD,
∴HF=AH.
∴点H是AF的中点.
(3)如图2所示:连接CH,CA,AC与BD交于点O.

由勾股定理可知:FC=$\sqrt{G{F}^{2}+G{C}^{2}}$=$\sqrt{5}$b,AC=$\sqrt{B{C}^{2}+A{B}^{2}}$=$\sqrt{5}$a.
∵四边形ABCD为矩形,
∴DB=AC=$\sqrt{5}$a,CO=$\frac{1}{2}$AC=$\frac{\sqrt{5}}{2}a$.
∵HO是△AFC的中位线,
∴HO=$\frac{1}{2}$FC=$\frac{\sqrt{5}}{2}b$.
∵${S}_{△DCB}=\frac{1}{2}DC•BC=\frac{1}{2}DB•CH$,
∴CH=$\frac{DC•BC}{DB}$=$\frac{2\sqrt{5}a}{5}$.
在△COH中,由勾股定理可知:HO2+CH2=OC2,即($\frac{\sqrt{5}}{2}b$)2+($\frac{2\sqrt{5}a}{5}$)2=($\frac{\sqrt{5}}{2}$a)2
整理得:a2=$\frac{100}{36}{b}^{2}$.
∴a:b=$\frac{5}{3}$.

点评 本题主要考查的是四边形的综合应用,解答本题主要应用了矩形的性质、勾股定理、三角形的面积公式、平行线分线段成比例定理、三角形中位线定理、相似三角形的性质和判定,掌握本题的辅助线的作法是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网