题目内容

6.如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD:AO=8:5,BC=3,求BD的长.

分析 (1)由等腰三角形的性质和已知得出∠ODA=∠CBD,由直角三角形的性质得出∠CBD+∠CDB=90°,因此∠ODA+∠CDB=90°,得出∠ODB=90°,即可得出结论;(2)设AD=8k,则AO=5k,AE=2OA=10k,由圆周角定理得出∠ADE=90°,△ADE∽△BCD,得出对应边成比例$\frac{AE}{AD}=\frac{BD}{BC}$,即可求出BD的长.

解答 解:(1)BD是⊙O的切线;理由如下:
∵OA=OD,
∴∠ODA=∠A,
∵∠CBD=∠A,
∴∠ODA=∠CBD,
∵∠C=90°,
∴∠CBD+∠CDB=90°,
∴∠ODA+∠CDB=90°,
∴∠ODB=90°,
即BD⊥OD,
∴BD是⊙O的切线;
(2)设AD=8k,则AO=5k,AE=2OA=10k,
∵AE是⊙O的直径,
∴∠ADE=90°,
∴∠ADE=∠C,
又∵∠CBD=∠A,
∴△ADE∽△BCD,
∴$\frac{AE}{AD}=\frac{BD}{BC}$,
即$\frac{10k}{8k}=\frac{BD}{3}$,
解得:BD=$\frac{15}{4}$.

点评 本题考查了切线的判定、等腰三角形的性质、圆周角定理、相似三角形的判定与性质;熟练掌握切线的判定方法,证明三角形相似得出比例式是解决问题(2)的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网