题目内容

1.如图,一只蚂蚁沿着一个长方体表面从点A出发,经过3个面爬到点B,已知底面是边长为2的正方形,高为8,如果它运动的路径是最短的,则最短路径的长为10.

分析 将长方体展开,根据两点之间线段最短,构造出直角三角形,进而根据勾股定理求出AB的长.

解答 解:如图:

AE=2×3=6,BE=8,
在Rt△AEB中,AB=$\sqrt{A{E}^{2}+B{E}^{2}}$=10.
故最短路径的长为10.
故答案为:10.

点评 考查了平面展开-最短路径问题,解答此题的关键是根据两点之间线段最短将图形展开,然后利用勾股定理解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网