题目内容

16.如图,O是∠MAN的边AN上一点,以OA为半径作⊙O,交∠MAN的平分线于点D,DE⊥AM于E.
(1)求证:DE是⊙O的切线;
(2)连接OE,若∠EDA=30°,AE=1,求OE的长.

分析 (1)连接OD,欲证DE是⊙O的切线,只需证明OD⊥DE即可;
(2)由∠EDA=30°,AE=1,易得AD=2,DE=$\sqrt{3}$,∠ADO=60°,进一步得出△ADO为等边三角形,得出OD=2,然后根据勾股定理即可求得OE.

解答 (1)证明:连接OD.
∵AD平分∠MAN,
∴∠EAD=∠OAD.
∵OA=OD,
∴∠ODA=∠OAD.
∴∠EAD=∠ODA.
∵DE⊥AM于E,
∴∠AED=90°.
∴∠EAD+∠EDA=90°,
∴∠ODA+∠EDA=90°.
∴OD⊥ED.
∴DE是⊙O的切线. 

(2)解:∵∠EDA=30°,
∴∠ODA=60°.
∵OA=OD,
∴△ADO为等边三角形.
在Rt△AED中,AE=1,可得AD=2,$ED=\sqrt{3}$.
∴OD=AD=2.
在Rt△ODE中,由勾股定理可得$OE=\sqrt{7}$.

点评 本题考查了切线的判定与性质、勾股定理、等边三角形的判定和性质等知识点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网