题目内容
3.已知关于x,y的二元一次方程组$\left\{\begin{array}{l}{x-6y=8a-21}\\{x-y=3a-1}\end{array}\right.$的解为正数,求a的取值范围.分析 将a看做已知数表示出方程组的解,根据x与y为正数,求出a的范围即可.
解答 解:$\left\{\begin{array}{l}{x-6y=8a-21①}\\{x-y=3a-1②}\end{array}\right.$,
①-②得:y=-a+4;
把y=-a+4代入②得:x=2a+3,
∵关于x,y的二元一次方程组$\left\{\begin{array}{l}{x-6y=8a-21}\\{x-y=3a-1}\end{array}\right.$的解为正数,
可得:$\left\{\begin{array}{l}{-a+4>0}\\{2a+3>0}\end{array}\right.$,
解得:-$\frac{3}{2}<a<4$.
点评 此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.
练习册系列答案
相关题目
11.甲、乙两人分别从相距8千米的两地同时出发,若同向而行,则t1小时后,快者追上慢者,若相向而行,则t2小时后,两人相遇,那么快者速度是慢者速度的( )
| A. | $\frac{{t}_{1}}{{t}_{1}+{t}_{2}}$ | B. | $\frac{{t}_{1}+{t}_{2}}{{t}_{1}}$ | C. | $\frac{{t}_{1}+{t}_{2}}{{t}_{1}-{t}_{2}}$ | D. | $\frac{{t}_{1}-{t}_{2}}{{t}_{1}+{t}_{2}}$ |
15.方程组$\left\{\begin{array}{l}{3x=2y}\\{x+y=50}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}{x=10}\\{y=40}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=15}\\{y=35}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=20}\\{y=30}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=30}\\{y=20}\end{array}\right.$ |