题目内容

4.在y=$\frac{3x-6}{-x+1}$中,当x取何值时,
(1)y是正数?
(2)y是负数?
(3)y的值是0?

分析 (1)根据y是正数,得到$\left\{\begin{array}{l}{3x-6>0}\\{-x+1>0}\end{array}\right.$或$\left\{\begin{array}{l}{3x-6<0}\\{-x+1<0}\end{array}\right.$,即可解答;
(2)根据y是负数,得到$\left\{\begin{array}{l}{3x-6>0}\\{-x+1<0}\end{array}\right.$或$\left\{\begin{array}{l}{3x+6<0}\\{-x+1>0}\end{array}\right.$,即可解答;
(3)根据y的值是0,即3x-6=0,且-x+1≠0,即可解答.

解答 解:(1)∵y是正数,
∴$\left\{\begin{array}{l}{3x-6>0}\\{-x+1>0}\end{array}\right.$或$\left\{\begin{array}{l}{3x-6<0}\\{-x+1<0}\end{array}\right.$,
解得:1<x<2.
(2)∵y是负数,
∴$\left\{\begin{array}{l}{3x-6>0}\\{-x+1<0}\end{array}\right.$或$\left\{\begin{array}{l}{3x+6<0}\\{-x+1>0}\end{array}\right.$,
解得:x>2或x<-2.
(3)∵y的值是0,
∴3x-6=0,且-x+1≠0,
解得:x=2.

点评 本题考查分式的值,解决本题的关键是明确分式的值为0,为分式的分子为0,且分母不等于0.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网