题目内容

20.如图,已知直线l1:y=3x+1与y轴交于点A,且和直线l2:y=mx+n交于点P(-2,a),根据以上信息解答下列问题:
(1)求a的值;
(2)不解关于x,y的方程组$\left\{\begin{array}{l}y=3x+1\\ y=mx+n\end{array}\right.$,请你直接写出它的解;
(3)若直线l1,l2表示的两个一次函数都大于0,此时恰好x>3,求直线l2的函数解析式.

分析 (1)因为点P(-2,a)在直线y=3x+1上,可求出a=-5;
(2)因为直线y=3x+1直线y=mx+n交于点P,所以方程组$\left\{\begin{array}{l}y=3x+1\\ y=mx+n\end{array}\right.$的解就是P点的坐标;
(3)因为直线l1,l2表示的两个一次函数都大于0,此时恰好x>3,所以直线l2过点(3,0),又有直线l2过点P(-2,-5),可得关于m、n的方程组,解方程组即可.

解答 解:(1)∵(-2,a)在直线y=3x+1上,
∴当x=-2时,a=-5.

(2)解为$\left\{\begin{array}{l}{x=-2}\\{y=-5}\end{array}\right.$.

(3)∵直线l1,l2表示的两个一次函数都大于0,此时恰好x>3
∴直线l2过点(3,0),(7分)
又∵直线l2过点P(-2,-5)
∴$\left\{\begin{array}{l}{3m+n=0}\\{-2m+n=-5}\end{array}\right.$,
解得$\left\{\begin{array}{l}{m=1}\\{n=-3}\end{array}\right.$.
∴直线l2的函数解析式为y=x-3.

点评 考查了一次函数与二元一次方程(组),用待定系数法确定函数的解析式,是常用的一种解题方法,另外本题还渗透了数形结合的思想,题出的比较好.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网