题目内容
16.方程组$\left\{\begin{array}{l}{x+y=4}\\{2x-y=2}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$.分析 方程组利用加减消元法求出解即可.
解答 解:$\left\{\begin{array}{l}{x+y=4①}\\{2x-y=2②}\end{array}\right.$,
①+②得:3x=6,即x=2,
把x=2代入①得:y=2,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目