题目内容

四个同样大小的圆,组成如图图案,它们的圆心连接组成一个边长12厘米的正方形,中间涂色部分的面积和周长各是多少?(π取3.14)
考点:扇形面积的计算,弧长的计算
专题:
分析:根据图形可知S阴影=S正方形-S,阴影部分的周长=圆的周长,进而可得出结论.
解答:解:∵圆心连接组成一个边长12厘米的正方形,
∴圆的半径=6厘米,
∴S阴影=S正方形-S=12×12-π×62=144-36×3.14=144-113.04=30.96(平方厘米).
故阴影部分的周长=圆的周长=2π×6=2×3.14×6=37.68(厘米).
点评:本题考查的是扇形面积的计算,在解答此题时要根据图形得出S阴影=S正方形-S,阴影部分的周长=圆的周长,以简化计算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网