题目内容

3.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF
(1)求证:△EBF≌△DFC;
(2)求证:四边形AEFD是平行四边形;
(3)①△ABC满足AB=AC时,四边形AEFD是菱形.(无需证明)
②△ABC满足∠BAC=150°时,四边形AEFD是矩形.(无需证明)
③△ABC满足AB=AC,∠BAC=150°时,四边形AEFD是正方形.(无需证明)

分析 (1)由△ABE与△BCF都为等边三角形,利用等边三角形的性质得到两对边相等,∠ABE=∠CBF=60°,利用等式的性质得到夹角相等,利用SAS得到△EBF与△DFC全等;
(2)利用(1)中全等三角形对应边相等得到EF=AC,再由三角形ADC为等边三角形得到三边相等,等量代换得到EF=AD,AE=DF,利用对边相等的四边形为平行四边形得到AEFD为平行四边形;
(3)①当AE=AD时,ADFE是菱形;
②当∠BAC=150°,由此可求得∠EAD的度数,则可得ADFE是矩形;
③当ADFE是正方形时,∠EAD=90°,且AE=AD,联立①②的结论即可.

解答 解:(1)∵△ABE、△BCF为等边三角形,
∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,
∴∠ABE-∠ABF=∠FBC-∠ABF,即∠CBA=∠FBE,
在△ABC和△EBF中,
$\left\{\begin{array}{l}{AB=EB}\\{∠CBA=∠FBE}\\{BC=BF}\end{array}\right.$,
∴△ABC≌△EBF(SAS),
∴EF=AC,
又∵△ADC为等边三角形,
∴CD=AD=AC,
∴EF=AD=DC,
同理可得△ABC≌△DFC,
∴DF=AB=AE=DF,
∴四边形AEFD是平行四边形;
∴∠FEA=∠ADF,
∴∠FEA+∠AEB=∠ADF+∠ADC,即∠FEB=∠CDF,
在△FEB和△CDF中,
$\left\{\begin{array}{l}{EF=DC}\\{∠FEB=∠CDF}\\{EB=FD}\end{array}\right.$.
∴△EBF≌△DFC(SAS),

(2)∵△EBF≌△DFC,
∴EB=DF,EF=DC.
∵△ACD和△ABE为等边三角形,
∴AD=DC,AE=BE,
∴AD=EF,AE=DF
∴四边形AEFD是平行四边形;

(3)①若AB=AC,则平行四边形AEFD是菱形;
此时AE=AB=AC=AD,即△ABC是等腰三角形;
故△ABC满足AB=AC时,四边形AEFD是菱形;
②若∠BAC=150°,则平行四边形AEFD是矩形;
由(1)知四边形AEFD是平行四边形,则∠EAD=90°时,可得平行四边形AEFD是矩形,
∴∠BAC=360°-60°-60°-90°=150°,
即△ABC满足∠BAC=150°时,四边形AEFD是矩形;
③综合①②的结论知:当△ABC是顶角∠BAC是150°的等腰三角形时,四边形AEFD是正方形.
故答案是:①AB=AC;
②∠BAC=150°;
③AB=AC,∠BAC=150°.

点评 考查了平行四边形及特殊平行四边形的判定,熟练掌握特殊四边形的判定方法和性质是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网